/> zenodys

ZENODYS PROTOCOL WHITE PAPER

Zenodys protocol

specification and data e d
format standardization . :::+
) P rra

Contents

Preface

1. Intro

2. Digital assets trading overview

3. Protocol implementation
3.1 Publishing and accepting asset terms
3.2 Off-chain asset exchange

4. Zenodys Protocol in action

oo A W W N

10

213

Preface

This document provides an overview of Zenodys Protocol and standard assets data
format for secure exchange inside Zenodys Network.

It's assumed that reader have basics about Visual Elements and Computing Engine
described in the technical whitepaper.

Current protocol implementation is for NET Computing Engine. Protocol
improvements, upgrades and implementation for C Computing Engine will be
implemented in future iterations.

1. Intro

Zenodys Platform is a development tool based on Visual Elements.
Implementation of Zenodys Protocol is also in form of Visual Elements - users will
trade their digital assets in a secure and flexible way by just drag’'n’dropping
protocol elements, setting their properties and combine them with other existing
Elements inside the Platform.

In general, three types of Elements are needed for transferring digital asset from
owner to customer:
e ZenLicenceChecker: this Element is running in Template on asset owner's
Computing Engine. It listens for asset requests and validates them.
e ZenAssetTransmitter: Element that transmits assets from owner to
customer after successful licence check
e ZenAssetReceiver: Element that runs on customer Computing Engine. It
initiates request and receives assets.

Their implementation can be found on GitHub

Those are standard Visual Element implementations - like existing ones inside
Zenodys Platform. Those microservice implementations Computing Engine
understands and executes.

In general, there are two types of Elements - ones that execute some actions
(ZenAssetTransmitter, ZenAssetReceiver) and ones that wait some event to happen
(ZenLicenceChecher).

It advisable to check Action and Eventable Elements for better code
understanding.
Existing Elements and both Computing Engines will be shortly open sourced.

313

https://zz.zenodys.com/zenodys-technical-whitepaper.pdf
https://github.com/Zenodys/ElementsTemplates/tree/master/ZenodysProtocol
https://github.com/Zenodys/ElementsTemplates/blob/master/DotNet/Action/ZenAction.cs
https://github.com/Zenodys/ElementsTemplates/blob/master/DotNet/Eventable/ZenEvent.cs

2. Digital assets trading overview

Digital assets trading is two phase process that contains publishing and accepting
asset terms on marketplace and off-chain asset exchange.

Digital assets can be different types. For example it can be data from device, file,
algorithm, dApp, Element... That's why trading process can be slightly different
from type to type, but in general steps are:

e Asset owner publishes new asset to marketplace and uploads Template to
his Computing Engine (or to Zenodys Node if asset is hosted on Zenodys
Network)

e Customer that wants to access digital asset must accept terms written in
smart contract and deploy Template that will deliver asset to his Computing
Engine.

e Licence terms are executed each time customer’'s Computing Engine
delivers asset.

Zenodys Marketplace contains different types of licences:
e Volume based licence that contains quantity how many times asset can be
accessed
e Subscription based licence allowing customer access asset for a given period
of time.

Other licence types will be added in next versions.

413

3. Protocol implementation

All security implementation (digital asset encryption/decryption, authentication,
keystore generation...), smart contract auto generation/deployment,
communication and business logic is implemented inside Zenodys
Platform/Protocol and executed by just setting the properties and connecting
Visual Elements. It does not require any cryptographic or programming knowledge
from the users.

3.1 Publishing and accepting asset terms

Publishing and accepting asset terms is a process that runs on the marketplace
dApp. When a user adds new digital assets to the marketplace, a smart contract is
automatically generated and published to the Ethereum network. Example of auto
generated smart contract for volume based licence can be found on github.

When the customer accepts the terms, addLicence function that inserts the licence
details is called:
e licenceld - unique customer’s digital asset purchase identification
e customer - customer’s Ethereum address
e price - price in tokens. Token quantity might vary from customer to
customer (bonuses and discounts might be included) so it's defined on
licence level
e quantity - number of permitted accesses to digital asset. Licence is removed
when quantity reaches zero. After that customer can extend licence under
same or different conditions

3.2 Off-chain asset exchange

To start with actual asset exchange, owner and customer must have deployed
Templates on their Computing Engines.

Cryptography Overview
There are two kinds of encryption algorithms:

e For symmetric-key algorithm, the same cryptographic key is used for both
encryption and decryption. Symmetric-key algorithms are faster and less
processor intensive than asymmetric-key algorithms. But there is a problem
- same key is used for both encryption and decryption, and this leads to big
problem of key distribution from encryption (sender) to decryption side
(receiver).

513

https://github.com/Zenodys/ElementsTemplates/blob/master/ZenodysProtocol/AssetsLicence.sol
https://github.com/Zenodys/ElementsTemplates/blob/master/ZenodysProtocol/AssetsLicence.sol#L28

Asymmetric key algorithms require two separate keys - public key is used to
encrypt plain text or to verify a digital signature and private key is used to
decrypt ciphertext or to create digital signature. Asymmetric key algorithms
doesn't have the problem of key transport, but they are computationally

costly compared with symmetric key algorithms.

Zenodys Platform uses both algorithms. Asymmetric key algorithm is used for
asset encryption and symmetric key algorithm is used only for encrypting the
symmetric key and signatures, which is computationally cost negligible.

Zenodys Protocol steps

Sending request for digital asset

AAVA,

CUSTOMER

Sending request for
digital asset

Receiving digital
asset

Receiving request for
digital asset

Verifying customer
address

Sending digital
asset

Customer signs digital asset’s licenceld with his private key. Resulting signature is
then encrypted with digital asset owner RSA public key. From signature,

customer’s Ethereum address is going to be extracted and verified by digital asset
owner.

6/13

Parameters sent in digital asset request:
e Jicenceld: unique customer’s digital asset purchase identification
e publicKey: customers RSA public key used for encrypting AES key which is
going to be used for encrypting digital asset
e encryptedSignature: signed licenceld used for verifying customer address by
asset owner
e callbackUrl: url for delivering digital asset.

Functions for sending asset request and encrypting signature are
SendAssetRequest and SignAndEncryptSignature.

Receiving request for digital asset

Digital Asset Owner receive request and decrypts the signature with his RSA
private key. Verification part extracts Ethereum address based on licenceld and
decrypted signature input. This is implemented in function WaitRequest.

Verifying customer address

Next step is to make blockchain verification. Once that asset owner has licenceld
and corresponding customer’s Ethereum address, smart contract's checkLicence
function is called. This function verifies if current address belongs to the licence.
Smart contract’s check licence is called from ZenLicenceChecker Element.

Sending digital asset

Sending digital asset to customer is performed if verification from previous step
succeeds. Here, a metadata stream that contains information about asset
encryption and asset’s standard values is created. The metadata stream is then
combined with digital assets and sent to customer’'s Computing Engine.

Asset and metadata stream are combined into byte array in following order:

Metadata length info Digital asset
I * \ - r - \
\ ; J o
Metadata

7N3

https://github.com/Zenodys/ElementsTemplates/blob/master/ZenodysProtocol/ZenAssetReceiver.cs#L241
https://github.com/Zenodys/ElementsTemplates/blob/master/ZenodysProtocol/ZenAssetReceiver.cs#L363
https://github.com/Zenodys/ElementsTemplates/blob/master/ZenodysProtocol/ZenLicenceChecker.cs#L148
https://github.com/Zenodys/ElementsTemplates/blob/master/ZenodysProtocol/AssetsLicence.sol#L34
https://github.com/Zenodys/ElementsTemplates/blob/master/ZenodysProtocol/ZenLicenceChecker.cs#L201

Metadata contains following fields:
Cryptography related

Encrypted: True / False

KeyEncryption: Algorithm used for encrypting AES key (eg “RSA2048")
DataEncryption: Algorithm used for encrypting digital asset (eg “AES128")
AESEncryptedKeyValue: Contains Key and IV encrypted values
DataSignature: Signature that prevents digital asset to be tempered. It
contains info about algorithm used for encrypting digital asset signature (eg
"HMACSHA256"), value and encrypted key

Digital asset related

AssetType: digital asset’s type based on it's physical representation (data, file,
image, algorithm, application, dApp...).

AssetSource: Asset origin. This can be hardware protocol (ZWave, Modbus,
RS232, 12C...), database (SqlServer, BigchainDB...) or some other source from
where asset originates. If asset is algorithm, application or dApp, source is
language used to create asset (R, C, C++, Rust, C#, Python....)

ResultUnit: Asset unit (kg, km, W....)

SystemType: Asset system type representation (int, double, bool, string,
DataTable, json....)

AssetSource, ResultUnit and SystemType are not mandatory, but it's highly
advisable for Element creators to provide them when applicable, for tighter
integration with Zenodys Protocol.

In this step also licence terms are executed.

8/13

Metadata structure example:

>True</ >
algorithm="RSA2048"></
algorithm="AES128">
>
< >
TIVULvZ8WWXOj1TuUikwGYkD4jIHDR8SRQVQNNX3jH/1pK2XVjkiJLCK/IqbCYL8KRUKA4KNhDhDBM3. . .
</ >
<IV>
cQor7SNS1VngTM76g4ZiGhiH4KuKBMAMzdictjdCXSrAjdU4nEmZvqTuVnN3U4hd3WoSI8xYoLw7wHy. . .
</IV>
</

</ >
algorithm="HMACSHA256" >
< >FAA3fUwsFh80QKYrnXqSYb/XyuhiFm82McGGOF /j654=</
< >
sgJ8F12Ra84e+g900GBZscBmpV4hHPU1Tg9U/HUiEjKU1VBgm/ytVPGIKKTp3K7igqyYOHEDIY7N45QR. . .
</ >

>
>Data</
>ZWave</
>W</
>Int32</

Asset transmission is implemented inside ZenAssetTransmitter Element.

Receiving digital asset

This is final step where digital asset is received on customer’'s Computing Engine.
When received, metadata is extracted from byte array and the digital asset is
decrypted. The asset can then be processed in the customer’s environment.

This is implemented inside WaitAssetResponse function.

9/13

https://github.com/Zenodys/ElementsTemplates/blob/master/ZenodysProtocol/ZenAssetTransmitter.cs#L293
https://github.com/Zenodys/ElementsTemplates/blob/master/ZenodysProtocol/ZenAssetReceiver.cs#L202

4. Zenodys Protocol in action

This section demonstrates digital asset trading. It's energy consumption trading
based on volume licence.

Publishing digital asset on marketplace
Asset owner publishes terms on marketplace.

Publish digital asset

Asset name Power Consumption
Asset category Data

License type Volume

Default price 1000

Asset endpoint tep://123.123.1.0:1234

Owners public key public.xml

e Asset name
Name of the asset

e Asset category
Can be data, file, algorithm, application...

e Licence type
Type of licence. Can be volume or subscription based

e Default price
Price in tokens

e Asset endpoint
Url on which asset can be reached

10/13

e Owners public key
RSA public key used for encrypting signatures and keys on digital access
distribution. Keystore is generated automatically by Computing Engine.

Based on entered information, a smart contract is automatically generated and
deployed to Ethereum blockchain. Example of generated smart contract is on
GitHub

Preparing Computing Engine to host asset

Asset owner deploys template on Computing Engine. Two standard Zenodys
Protocol Elements are required on owner side - ZenLicenceChecker that waits for
customers requests and ZenAssetTransmitter that sends asset to customer.

zenodys Projects

EnergyTrading -

A

@D Node properties @

Licence Checker

NAME

OPERATOR

OR v

SERVER URL

e S

GetEnergy AssefTransmitter

PROVIDER URL

OWNER ADDRESS

OWNER PASSWORD

ssscevese

Workflow description

Loop entry point is Start Element that immediately moves to LicenceChecker that
stops workflow and waits for buyers digital asset request.

When request arrives it validates the licence. If licence validation succeeds it
measures power consumption (eg Fibaro ZWave smart plug).
AssetTransmitter then encrypt power consumption, prepares it to standardized
format and transfers it to customer.

1nN3

https://github.com/Zenodys/ElementsTemplates/blob/master/ZenodysProtocol/AssetsLicence.sol

LicenceChecker Element and proceeding worflow is executed on every customer’s
request.

An asset in this example is simple, but it could be additionally processed and
merged with other digital assets.

Purchasing digital asset
Customer purchase asset on marketplace.

Purchase digital asset

Price 1000 ZZ

Quantity

Promo code DISCOUNTS0

Cancel PURCHASE

e Price
Asset price in tokens

e Quantity
Customer enters quantity.

e Promo code
Promo code can contain bonuses, discounts etc. Price is automatically

calculated based on Promo code discounts.

Licence is automatically saved to smart contract by calling “addLicence” function

12/13

https://github.com/Zenodys/ElementsTemplates/blob/master/ZenodysProtocol/AssetsLicence.sol#L28

Preparing Computing Engine to access asset

Customer deploys Template on Computing Engine. Standard protocol Element

AssetReceiver is required that sends asset request and receive it.

zenodys Projects Analytics £ Engine

Customer

PROVIDER URL
http:/localhost

m OWNER ADDRESS

MySQL

StartC

OWNER PASSWORD

PRIVATE KEY

sssss00ssss0eses

UNLOCK DURATION

Sleep
CONTRACT ADDRESS

ASSET LICENCEID

Workflow description

Loop entry point is Start Element. Then AssetReceiver sends request for asset and

waits until it arrives. In next step, it's saved to database. Additionally, the asset
could be processed before storing it.

13/13

